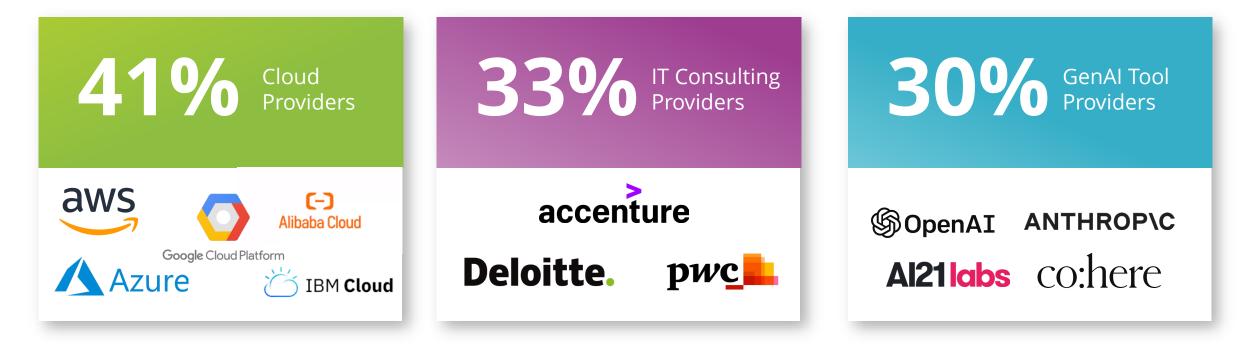


GenAl for Competitive Advantage Build Versus Buy

Daniel M. Saroff Group Vice President, Consulting and Research

What's your organization's current approach to Generative AI?

• Investing significantly in Generative AI.


Allocation of New GenAl Investments by Enterprises Planning to Increase Overall IT spend in 2024

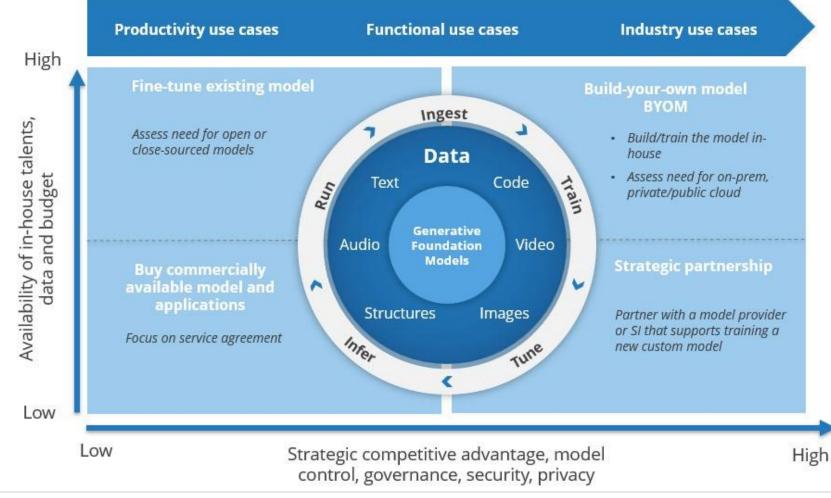
You indicated that Generative AI will be an area of increased IT spending in 2024, regardless of overall IT spending plans. What is your best estimate of how this increased investment will be allocated across the following areas?

	Worldwide	North America
Dedicated Infrastructure (i.e. Al-specific server and storage hardware in on-premise/colocation datacenters as well as remote edge locations)	24%	27%
Public Cloud-infrastructure (i.e. compute and storage cloud service)	21%	21%
External AI Platforms (i.e. software/dev tools, AI models, external data sources)	21%	22%
Internal data scientists, developers, Data Ops employees, and other IT and line of business employees	17%	15%
External Services Providers (i.e. consulting, custom development, managed services etc.)	16%	14%

Leading GenAl Strategic Technology Partners Worldwide

Strategic Generative AI technology partners in the next 18 months

Over 66% of Organizations Planning to Decrease or Freeze Overall IT Spending in 2024 **Still** Plan Increase Investments in GenAl Through Either New Funding or Cuts in Other Areas


	Global	N. America
We will make significant new investments in GenAl separate from current IT budget plans	35.7	34.0
We will fund any new GenAl spending by more aggressively cutting spending in other areas	31.7	27.6
GenAI will NOT have any influence on our IT budget plans	32.6	38.4

Build and Buy and Configure and Create

Build Vs. Buy A false dichotomy – really configure **and** create.

Organizational GenAI goals will be influenced by their individual business and technology circumstances. This will result in a mix of build and buy approaches across different use cases.

Typical Use Cases Three broad categories of GenAI use cases deliver increasing business value to the extent they leverage enterprises' native data.

Use case categories range from productivity to functional to industry. They provide increasing differentiation while necessitating increased levels of control over model architecture, security, data privacy, and governance

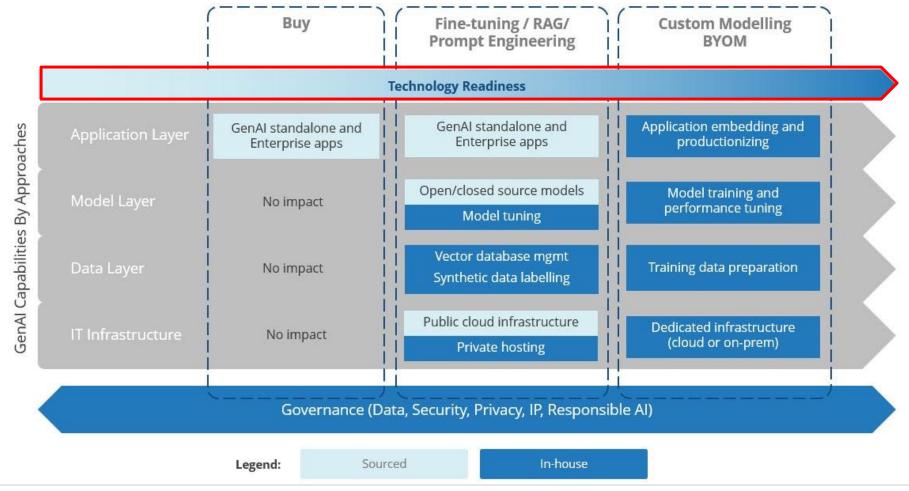
Use Cases Categories	Business Impact	Drivers	Possible Implementation Approach	Use Case Example	
Productivity use case	 Increases task productivity Drives operational efficiencies 	 Limited talent in-house Limited budget Low risk appetite Early adoption Limited institutional data 	 Commercial applications with embedded GenAI Native GenAI standalone applications (e.g., Microsoft Copilot, Jasper AI, and so forth 		Increasing Maturity
Functional use case	 Increased functional effectiveness Contextualized experiences 	 Well-harmonized institutional data Available talent in-house Budget available Medium risk appetite 	 Fine-tuning open source models Fine-tuning models available from model hubs and AI platforms Retrieval-augmented generation (RAG) 	 Provision of hyper-personalized sales and marketing Hyper-personalized wealth and investments knowledge management Generative product design and prototyping 	
Industry use case	 Enable new digital business models, products, and services Industry-specific competitive moats 	 Stringent regulatory and privacy requirements. Talent in-house or partner Quality and quantity institutional data 	 Fine-tuning third-party or industry models Custom-built models (BYOM) 	 Generative drug discovery in life science Generative material design for manufacturing 	

Build Approaches Elaborated

Build approaches deliver focus and differentiation, but IDC also see foundation models evolving to support more specialized industry and business process–specific use cases.

The build approach can self-implemented or through a partnership with a vendor or service provider if inhouse talent is unavailable.

Approach	Description	Associated Life-Cycle Steps and Key Considerations	Sample Key Technology/Tools (Vendor)
Prompt engineering	Use prompting techniques to influence generated outputs of a pretrained model.	 Run: Prompt engineering skills Open source or commercial models On-premises model or API access Modalities 	 Open source models: GPT-3 (OpenAI), Hugging Face Transformers, BERT, ELECTRA (Google) Commercial models: GPT-3.5 Turbo (OpenAI), IBM Watson (IBM), DeepL
RAG	Combines a domain-specific collection of documents with pretrained models to contextualize output, without touching the LLM	 Ingest: Large volume and quality of domain-specific documents Infer: Vector database selection Embedding model selection 	 Vector databases: Vespa, NGT, Pinecone, Milvus, Elasticsearch, Faiss (Meta), Weaviate Embedding models: ELMo, SBERT, FastText, Word2Vec, GloVe
Fine-tuning	Using domain data and human supervision to tune pretrained models to improve domain-specific performance	 Ingest: Training data quality and governance Tune: Availability of matching foundation models ML expertise for parameter tuning and MLOps capability Labor and skills for ongoing RLHF Compute capacity and cost Regular re-tuning for data refresh 	 ML framework: TensorFlow, PyTorch LLM orchestration framework — LangChain, LlamaIndex Specialized generative model libraries: Hugging Face Transformers, StyleGAN (Nvidia) Model optimization platforms: Optuna, HyperOpt, Ray Tune Cloud-based ML platforms: Vertex AI (Google), AWS SageMaker, Runway ML, Einstein Platform (Salesforce), WatsonX (IBM)
Custom modeling (Specialized / Industry)	Foundation models built on large corpus of proprietary data	 Ingest: Large volume of quality training data and governance Train and tune: ML expertise for parameter tuning and AI/MLOps capability Experienced data science and ML team Dedicated compute and storage capacity 	 Compute and storage capacity: Nvidia, AWS, AMD, Intel, Google Cloud, Microsoft Azure Cloud-based AI platforms: DGX Cloud (Nvidia), Azure AI (Microsoft), WatsonX (IBM), Vertex AI (Google) Data platforms: Oracle, Snowflake, Cloudera, Databricks


Note: Technology examples are not necessarily exclusive to the stated GenAl approach and are not an endorsement. They are used as examples.

Technology Readiness for GenAl Approaches

Building the GenAI capability can range from fairly lightweight to an extremely involved process impacting multiple layers of the technology stack.

The technological readiness of the organization helps determine build versus buy decisions. For example, the greater the readiness implies better controls and governance — a key enabler for GenAI.

Takeaways

0

00

C

•••

• •

c

0

C

0

0

0

Ó

Ø

0

Some Takeaways

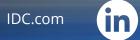
Understand your near-term and long-term foundational GenAI readiness

Get your data house in order

Start with understood, good, recent, and relevant data

Build for the future with a platform and integration in mind

Understand your genAI business priorities – productive, functional, industry


It's not build versus buy; it's both. Choose what makes sense for each component of your strategy

€IDC

Daniel Saroff Group Vice President Consulting and Research dsaroff@idc.com +1.508.935.4462

